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ABSTRACT

The aging population challenges the health-care system with chronic diseases. Cerebrovascular diseases are 
important components of these chronic conditions. Stroke is the acute cessation of blood in the brain, 
which can lead to rapid tissue loss. Therefore, fast, accurate, and reliable automatic methods are required 
to facilitate stroke management. The performance of artificial intelligence (AI) methods is increasing in all 
domains. Vision tasks, including natural images and medical images, are particularly benefiting from the skills 
of AI models. The AI methods that can be applied to stroke imaging have a broad range, including classical 
machine learning tools such as support vector machines, random forests, logistic regression, and linear dis-
criminant analysis, as well as deep learning models, such as convolutional neural networks, recurrent neural 
networks, autoencoders, and U-Net. Both tools can be applied to various aspects of stroke management, 
including time-to-event onset determination, stroke confirmation, large vessel occlusion detection, diffusion 
restriction, perfusion deficit, core and penumbra identification, affected region segmentation, and functional 
outcome prediction. While building these AI models, maximum care should be exercised in order to reduce 
bias and build generalizable models. One of the most important prerequisites for building unbiased models is 
collecting large, diverse, and quality data that reflects the underlying population well and splitting the training 
and testing parts in a way that both represent a similar distribution. Explainability and trustworthiness are 
other important properties of machine learning models that could be widely adopted in clinical practices.
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Introduction
Stroke is one of the leading causes of death globally. About 6.1% of the total 565 594 deaths in 
Turkey in 2021 were related to acute stroke.1 Every 15 minutes, 1 person dies in Turkey due to 
stroke.1 Furthermore, the cost of stroke to the health-care system is great as well. According 
to a statistic in the USA, the annual cost of stroke to the health-care system was $56.5 billion 
between 2018 and 2019.2 Due to these facts and the potential benefit of early intervention, 
there is great interest in the medical image analysis community to develop automatic stroke 
analysis systems from imaging.3 Digital health care is a rising topic among researchers.4,5 A total 
of 214 applications for radiological imaging with artificial intelligence (AI) were approved by the 
U.S. Food and Drug Administration and/or CE so far. Of these 214 applications, 73 are related 
to neuroimaging, and more than half of these 73 applications are related to stroke assessment, 
which is evidence of the great interest of researchers in stroke management automation tasks.3 
Classical machine learning techniques such as support vector machines,6 random forests,7 deci-
sion trees,8 logistic regression,9 linear discriminant analysis,10 and artificial neural networks11 as 
well as deep learning methods were utilized for these tasks. The exclusion of artifacts from the 
image is also an important preprocessing step since it may interfere with the quality of quantita-
tive methods.12 

Classical machine learning methods use hand-crafted features and data science principles, which 
hierarchically evaluate the feature subsets to find the best subset with respect to the curse of 
dimensionality.13 Curse of dimensionality refers to the importance of dimension of representa-
tion vector considering the number of samples in order to prevent overfitting.14 Overfitting 
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refers to learning the specific characteristics of 
training samples rather than general character-
istics that can be applied to unseen data. An 
overfit model performs greatly on the train-
ing samples but also fails greatly on the unseen 
external data. 

Radiomics, which evaluates high-throughput fea-
tures obtained from the images and constructs 
classification models based on these features, 
extracts features basically using 3 types of com-
putational methods.15 One of these methods 
is shape-based features, which compute the 
boundary pixels and summarize the charac-
teristics of these boundary pixel distributions 
related to the shape of the lesion. The second 
set of methods is histogram based. The histo-
gram counts the number of pixels with each 
intensity level.16 The last method is second- and 
higher-order image statistics based on gray 
level co-occurence matrix, gray level run length 
matrix, gray level size zone matrix, and gray level 
dependence matrix.17 Each of these methods 
computes a specific property of the image and 
transforms the image into a set of numbers in 
the order of thousands. These numbers rep-
resent the underlying image and are therefore 
called feature representation vector. The fea-
ture vectors of all samples collectively form the 
feature space. For a classifier to work properly, 
the number of features (the dimension of fea-
ture space) should not be too high compared 
to the number of samples. Ideally, for each 
feature, there should be at least 10 samples.18 
Therefore, the number of extracted features 
should be diminished before feeding them into 
classical machine learning classifiers. Feature 
selection methods are employed to discard 
nonrelevant features and keep the best ones.19 
For this purpose, initially, the features that can 
be reproduced well by different observers are 
kept. These features are called robust features.20 

Typically, correlation scores among observers 
are used for this selection. The second step is 
the elimination of redundant features. Since the 
features are obtained by computing different 
but interrelated properties of the image, they 
can greatly overlap or be obtained by a linear 
combination of the others.20 These will give little 
information together; instead, they will harm 
the model due to the dimensionality increase. 
Therefore, redundant features should be dis-
carded, typically based on intraclass correlation 
coefficients. And finally, the most relevant and 
handful subset should remain after supervised 
feature selection. At the end, a robust, non-
redundant, and relevant feature subset is fed 
into the classifiers. 

There are various studies based on classical 
machine learning models for stroke imaging 
research. A support vector machine (SVM)-
based classifier was used for carotid athero-
sclerosis detection, and random forest-based 
classifier was used to detect brain edema.21,22 
Logistic regression (LR) was used for thrombus 
detection in computed tomography angiography 
(CTA), and an artificial neural network was used 
for perfusion defects in computed tomography 
perfusion (CTP).23,24 Varying degrees of accuracy 
ranging from 85% to 97% were reached in these 
early studies. However, the main problem was 
the small sample size and lack of benchmarking 
opportunities against a well-curated public data-
set. To mitigate this problem, various efforts are 
combined to publish public datasets that serve 
as benchmarking datasets. Furthermore, global 
challenges with money prizes were arranged 
to accelerate the solutions. Radiological 
Society of North America (RSNA) Intracranial 
Hemorrhage Detection challenge and data-
set, ISLES ischemic stroke lesion segmentation 
challenge and dataset, and Anatomical tracings 
of lesions after stroke (ATLAS) challenge are 
some examples of the global outcomes of these 
efforts.25,26,27 In Turkey, TUSEB provided a com-
puted tomography (CT) dataset focusing on 
slice-wise ischemic and hemorrhagic lesion clas-
sification task.28 These efforts have accelerated 
the production of AI applications for stroke. 
However, the main architecture for these appli-
cations was deep learning based rather than 
classical machine learning. In deep learning, a set 
of layers specialized in certain tasks are stacked, 
and relevant features are extracted by this archi-
tecture.29,30 The convolution, maximum pooling, 
and rectified linear unit (ReLU) activation func-
tions are the backbone of deep vision models. 
Therefore, the models specialized on vision 
tasks that are heavily dependent on convolu-
tion are called convolutional neural networks 
(CNN).31 The convolution operation is matrix 

multiplication. A small matrix, which is usually 3 
× 3 for two-dimensional images or 3 × 3 × 3 in 
a 3-dimensional (3D) setting and which is called 
a filter, traverses the image in a sliding window 
fashion. This filter is multiplied with the image 
patch under it elementwise, and the results are 
summed. Therefore, it transforms the underly-
ing patch based on its values. By this way edges, 
corners, edges, and other high-level features 
could be captured, which progressively turned 
into low-level abstract features that represent 
the underlying image. The maximum pool-
ing operation is used to find the highest peaks 
and keep them in order to reduce the dimen-
sion of the feature maps, and the ReLU activa-
tion function adds nonlinearity to the model 
to further assist complex classification tasks. 
Two-dimensional CNN evaluates slices, and 
3D CNN evaluates the entire image volume. 
However, in some instances, for example, when 
there are not enough samples or computational 
resources, the image volume may require slice-
by-slice encoding rather than 3D encoding. 
Then recurrent neural networks are utilized.32 
Recurrent neural network (RNN) evaluates 
each slice like CNN and keeps that encoding to 
add to the next slice. Therefore, the entire image 
volume can be encoded slice by slice. In these 
architectures, a gold standard of ground truth 
is required. This can be stroke territory classes 
or stroke mechanism classes.33 This ground truth 
supervises the model while learning; therefore, 
this type of training is called supervised deep 
learning. Sometimes the ground truths cannot 
be at hand; therefore, supervised training can-
not be applied. 

Autoencoders (AE) are self-supervised deep 
learning architectures.34 Autoencoders have 2 
parts, which are the encoder and the decoder. 
The encoder is the same as the supervised 
CNN, which encodes the image into a repre-
sentative vector, which is called the bottleneck 
layer. Since there is no explicit supervision sig-
nal, the input itself may behave as ground truth. 
For this purpose, a decoder part that converts 
the bottleneck features into the original image 
is added. 

For the classification tasks, the whole image vol-
ume is predicted as a certain class. However, 
sometimes the pathologic region may be the 
region of interest, and the main aim might be 
to segment that area from the remaining image. 
This type of task is called dense prediction task 
since each voxel in the image is predicted to 
be either a member of the region of interest 
or not. U-Net is the usual architecture for seg-
mentation tasks.35 For training U-Net, which is 
a supervised network, a segmentation map is 

Main Points

• Stroke is one of  the most extensively studied 
topics in radiology and artificial intelligence (AI) 
research.

• The urgency of  assessing the lesions and the time-
critical nature of  the disease make stroke attrac-
tive for AI research.

• Early stroke detection, large vessel occlusion, 
diffusion-weighted imaging—Alberta stroke pro-
gram early computed tomography score estima-
tion, ischemic ore and penumbra estimation, and 
prognosis prediction are the most important clini-
cal applications of  AI in stroke.

• Classical machine learning and deep learning can 
be applied to stroke; however, with deep learning, 
more refined outcomes can be obtained.

• Explainability and trustworthiness remain the 
most important issues to be tackled before large-
scale adoption of  AI models in stroke.
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prepared for guiding the model. ITKSnap or 3D 
Slicer are free software to prepare these seg-
mentation masks.36,37 U-Net architecture is like 
AE since it includes an encoder and a decoder. 
However, each down-sampled layer is reflected 
to the corresponding decoder level and con-
catenated with its output to keep the spatial 
information.

Deep learning methods are widely used for 
stroke AI research. Choi et  al38 used RNN to 
predict stroke with 0.94 accuracy. Do et  al39 
used a RNN with diffusion weighted imaging 
(DWI) to predict MR Alberta stroke program 
early computed tomography score (ASPECTS) 
with area under curve (AUC) of 0.94. Praveen 
et  al40 used AE for accurate segmentation of 
stroke region with 0.90 accuracy.

Clinical and Research Applications
Various aspects of stroke clinical management 
can benefit from AI automatization.

Large vessel occlusion (LVO) detection, LVO 
location, ICH detection, CTP analysis, collateral 
assessment, ASPECT scoring, ischemic region 
segmentation, aneurysm detection, hemorrhage 
detection, and classification are the main targets 
for AI stroke research and commercialization.41

Early Stroke Detection
When a patient admits the emergency room 
with stroke suspicion the usual first step is acqui-
sition of non-contrast CT to rule out hemor-
rhagic infarct.42

Hemorrhage detection is an important target 
for stroke management. Dawud et al conducted 
a study with 12 635 CT images to explore binary 
prediction of hemorrhage of brain and reached 
93% accuracy.43 Perreira et al44 utilized a CNN to 
classify 300 CT slices into normal, ischemic, and 
hemorrhagic stroke and reached 99% accuracy.

Some studies focused on ischemic stroke 
detection in non-contrast CT with varying 
degrees of performance. However, in a hyper-
acute setting, in less than 6 hours, CT signs are 
subtle for an ischemic infarct diagnosis. The 
authors reported over 90% accuracy with 
patch-wise input45 and in another study, the 
authors reported 90% accuracy with slice-wise 
input for ischemic stroke prediction46. Both 
studies were conducted with a small sample 
size, which questions their generalization ability 
in larger cohorts. However, in middle cerebral 
artery (MCA) occlusions, the thrombus inside 
the vessel can be seen in the hyperacute win-
dow.47 A hyperdense MCA sign is a good candi-
date for detection as a proxy for acute stroke. 

Lisowska et  al48 reached 0.87 AUC to detect 
hyperdense MCA sign. Magnetic resonance 
imaging (MRI), particularly DWI, can identify 
ischemic lesions in the hyperacute phase.49 The 
usual routine in Turkey is rapid acquisition of 
DWI for confirming or ruling out stroke and 
then either triage to a dedicated stroke cen-
ter or onsite treatment that is based on the 
detected pathology. The sensitivity of DWI for 
the diagnosis of acute stroke is 73%-92% within 
3 hours of onset.50 Time is critical for stroke 
management. If the treatment is initiated within 
6 hours of stroke onset, the best possible out-
come can be obtained. Therefore, time to 
stroke onset is another important criterion 
while assessing stroke. In radiological evalua-
tion, DWI-positive FLAIR-negative lesions can 
be regarded as in the hyperacute stage.51 If the 
lesion is well delineated in FLAIR, then odds are 
high that the onset of the target lesion is older 
than 6 hours. This is known as a DWI-FLAIR 
mismatch. However, more objective, and a 
reliable criteria are required. Shinohara et al52 
conducted a study to detect stroke onset time 
and classified the patients who were within 
4.5 hours of event onset with 92% precision. 
Abedi et al built a CNN to detect time after 
stroke onset and classified the patients within 
4.5-hour window with a predictive AUC of 
74%, which may help in stratifying patients with 
unwitnessed stroke episodes. Medical images 
have some unique properties compared to 
natural images. The symmetry property of the 
organs is among them. The symmetric orga-
nization of the brain was used by researchers 
to diagnose acute ischemic stroke in DWI and 
Apparent diffusion coefficient (ADC) maps 
with an AUC of 0.85.53

Litjens et al54 built a model leveraging contralat-
eral information to extract MCA and achieved 
96% AUC.

Stroke has different subtypes that require dif-
ferent management strategies. Therefore, the 
affected territory also has implications regard-
ing the selection of treatment strategies. Subuti 
et  al55 analyzed diffusion-weighted images with 
SVM and classified stroke territory according 
to total anterior, partial anterior, and lacunar 
infarcts with 92% accuracy. Çetinoğlu et al56 uti-
lized transfer learning with EfficientNet B0 and 
MobileNetV2 to classify DWI images into MCA, 
watershed, and posterior circulation infarcts. 
They reported 93% overall accuracy. Lee et al57 
designed a similar study and classified DWI 
images into anterior vascular zone infarcts, pos-
terior vascular zone infarcts, and normal slices, 
and they reported 86% accuracy with transfer 
learning.

Large Vessel Occlusion
Possible commonly known etiologies of ischemic 
stroke are large vessel occlusion, small vessel 
occlusion, and cardioembolism, according to the 
TOAST classification.58 A LVO can be reversed 
by using either intravenous or intraarterial 
thrombolysis if it can be treated earlier than 6 
hours after the onset of the event.59,60 Although 
LVO accounts for 38% of acute ischemic strokes 
it is responsible for 60% of all stroke-related 
disabilities and 90% of stroke-related deaths.61 
Computed tomography angiography is the main 
tool for diagnosing LVO. Amukotuwa et  al62 
utilized fast CTA to detect anterior circulation 
occlusions and reached 0.94 sensitivity and 0.76 
specifity. Chatterjee et al63 used CNN to detect 
LVO and Shaham et al64 used RNN for the same 
task. They reached 0.82 sensitivity and 0.94 
AUC, respectively, to detect LVO. Brainomix 
(Brainomix Ltd.), Rapid (iSchemaView), Viz (Viz.
ai, California, USA), and CINA (Avicenna.ai, La 
Ciotat, France) are commercial products that 
can predict LVO.3 These tools also detect perfu-
sion deficits and estimate stroke core and pen-
umbra when they are utilized with CT perfusion 
images. Rapid also predicts collateral status 
after occlusion based on the symmetry of the 
vessel density of the images.65 McLouth et  al66 
used CINA to validate LVO67 and obtained 98% 
accuracy.

Alberta Stroke Program Early Computed 
Tomography Score
While assessing the acute ischemia in CT, the 
exact extent of the lesion is difficult to discern due 
to poor margins initially. ASPECTS is developed 
to mitigate this difficulty and estimate severity of 
affection.68 MCA territory infarcts account for 
50% of all ischemic infarcts.69 ASPECTS evalu-
ates the extent of MCA infarct area by marking 
10 regions of MCA feeding zone. Six of these 
are hemispheric regions divided into 2 compart-
ments: cranial and caudal. The 3 hemispheric 
regions in either cranial or caudal division are 
further divided into 3 regions indicating anterior, 
middle, or posterior one third. The remaining 4 
zones are the caudate nucleus, lentiform nucleus, 
insular ribbon, and internal capsule.70 The best 
score is 10, and 1 point is subtracted from the 
best score for each affected area to determine 
the final score. ASPECTS is key to define the 
suitability of the patient for reperfusion ther-
apy. Currently, American Heart Association 
(AHA) recommends reperfusion therapy for 
MCA strokes with >5 ASPECTS.71 ASPECTS 
is initially defined for non-contrast CT exami-
nations; however, it is extended to MRI as DWI-
ASPECTS. There are important studies in the 
literature and commercial products to automati-
cally predict the ASPECTS both from CT and 
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DWI images. e-ASPECTS (Brainomix, Oxford, 
UK) and RAPID-ASPECTS (Siemens Gmbh, 
USA) are among them. Nagel et al72 designed a 
benchmark study utilizing RAPID-ASPECTS and 
e-ASPECTS against 2 radiologists. E-ASPECTS 
performed better than human in that study. In 
contrast to the findings of Nagel et al, Goebel 
et  al73 found that expert consensus of radi-
ologists performed better than e-ASPECTS 
which was validated by follow-up imaging. On 
the other hand, Guberina et al74 benchmarked 
RAPID-ASPECTS against human and found that 
the performance of the software is better than 
the human consensus. The conflicting results 
among these studies reflect the bias in the stud-
ies, which should be decreased in multicenter, 
extensive validation cohorts. The CT protocol, 
the age of the infarct, the experience of the 
radiologists, and the homogeneity of imaging 
protocols can affect the results. However, these 
AI tools exhibit considerable performance that 
can be adopted into the workflow with second-
ary supervision for increasing productivity and 
efficiency. In a study, authors built a CNN model 
to calculate the CT ASPECTS and reached 0.94 
AUC for a dichotomized task that predicts 
ASPECTS >5.75 Fahed et al used RNN to pre-
dict DWI-ASPECTS and reached AUC of 0.94.76 
Cheng et al77 compared AI DWI-ASPECTS and 
consensus of senior radiologist against junior 
and senior radiologists and found that software 
performed better than junior radiologists to 
correlate with the labels derived from the con-
sensus of senior radiologists.

Ischemic Core and Penumbra Evaluation
Perfusion is an important characteristic to 
assess the health of tissue, both for the brain 
and other organs in the body.78 The ischemic 
core is the irreversibly damaged tissue, and the 
penumbra is the potentially salvageable tissue in 
the setting of an acute ischemic infarct.79 One of 
the main purposes of revascularization therapy 
is to rescue the penumbra as much as possible 
without further compromising the status of the 
patients due to reperfusion injury. Therefore, 
the determination of core and penumbra loca-
tions and areas is important for patient man-
agement. In radiology practice, there are 2 
largely utilized tools to determine the ischemia 
core and penumbra. One is diffusion-perfusion 
mismatch. Both diffusion-restricted and perfu-
sion-deficit areas correspond to the core, and 
perfusion-deficit areas without diffusion restric-
tion correspond to penumbra. The second tool 
is solely perfusion imaging based. In CTP imag-
ing, the areas with a delayed time to a maximum 
peak more than 6 seconds correspond to the 
penumbra. With CTP imaging, the second tool, 
and with MR imaging, both tools can be used. 

Since CT imaging with CTA for LVO and CTP 
for perfusion assessment is the main work-
ing horse of stroke assessment, most of the 
research conducted about ischemia core and 
penumbra evaluation is CT based. This assess-
ment requires segmentation of affected areas, 
so it is very labor-intensive. The AI segmenta-
tion tools can take place here and greatly reduce 
the time required for segmentation compared 
to manual work. Furthermore, with manual 
segmentation, the interobserver correlation is 
low, which hampers its utilization for further 
downstream tasks.49 Rapid, F-Stroke, E-Stroke, 
CINNA, and Vitra are some commercial soft-
ware for core and penumbra evaluation.3 
Significant differences were encountered with 
these software.80 Nevertheless, they are useful 
as a complementary tool. Chen et  al81 used a 
2-stage cascade CNN with DWI and reached 
0.67 Dice score for stroke core segmentation, 
which is comparable to manual segmentation. 
Ho et al82 leveraged self-supervision with AE to 
locate the stroke core and penumbra on per-
fusion MRI and reached an AUC of 0.68. The 
predictive ability of deep networks for future 
unseen data is also a hot topic for AI research. 
Stroke is a dynamic process that evaluates in dif-
ferent directions over time. The final diseased 
area is one of the most important determinants 
of patient prognosis. Therefore, some research-
ers attempted to predict the final stroke volume 
based on the initial appearances. Nishi et  al83 
used 3D U-Net on DWI images and predicted 
final stroke volume with an AUC of 0.88. Yu 
et al84 approached the problem as a 2.5D task. 
In 2.5D approach 3 orthogonal slices are used 
to simulate the 3D extent of the lesion. In their 
work, the authors predicted the 3-7-day infarct 
volume by using initial MRIs and achieved a 
median AUC of 0.92.

Prognosis Prediction
For the stroke patients and their families, the 
most important question is the expected out-
come. This information is vital for the managing 
clinician as well, since they can advise them more 
confidently about the expected outcome.

The role of laboratory parameters, includ-
ing biochemical and serologic biomarkers, are 
explored for better stroke management.85,86 
Modified Rankin scale (mRS) is a clinical tool that 
assess the functional status of the patient.87 It is 
a 5-point scale with worsening a status while the 
score is increasing.88 Hoa et al89 built a CNN to 
predict mRS as a dichotomized target with cut-
off score of 2 on DWI. They reached an AUC of 
0.88. Ding et al90 developed a CNN to predict 
functional outcome based on infarct volume on 
DWI and reached an AUC of 0.97.

Challenges
The main assumption of machine learning and 
deep learning studies is that the training and 
testing data came from the same distribution. 
Therefore, when a model learns the relevant 
features of the training set, it can be generalized 
to the test set. This is a strong assumption and 
requires a large, diverse, and comprehensive data 
collection strategy that covers the characteristics 
of the population as much as possible. However, 
the data regulations and privacy rules obviate 
collecting such data. Most of the research con-
ducted so far has been carried out on the data 
from a single or a few centers with a few hundred 
patients at most. Therefore, all studies have bias 
conditioned on the distribution of the dataset at 
hand to some extent. This is the most impor-
tant challenge that should be overcome. The 
solution is either the collection of large samples 
from different regions of the world, obtained 
from different scanners with different acquisition 
parameters, or federated learning, which implies 
using the data where it is acquired without taking 
it outside that center. The explainability and trust-
worthiness of the models, which consider the 
inherent uncertainty of medicine, are also impor-
tant challenges. The models may rely on spurious 
correlations other than relevant features while 
modeling the underlying data distribution. These 
models may work well with that particular data; 
however, when data drift is encountered, they 
cannot produce reliable predictions. However, 
physicians responsibility of the patient, and their 
management decision, may drive the prognosis to 
a favorable or less favorable direction. Therefore, 
they are required to justify their decisions in a 
rational reason-outcome model. However, deep 
models are mainly black box models with little 
logic for the humans while making their predic-
tions. Currently, saliency maps and gradient back-
propagation-based solutions may help to some 
extent. However, better designed, more reliable, 
and trusted explanation tools should be devel-
oped in order to accelerate the full adoption of 
AI tools in radiology clinics.

Conclusion
In conclusion, AI, including classical machine 
learning and deep learning, are important tools 
to help clinicians with stroke management. 
Particularly, segmentation of interest areas for 
further downstream tasks, which is very labor-
intensive and fast triage of emergency cases in 
the absence of radiologists are 2 main focuses 
that can immediately benefit from AI mod-
els. Disease classification and decision support 
tools need further external validation with large 
cohorts and support with model explanation 
tools for wider adoption in radiology clinics and 
hospitals.
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