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ABSTRACT

Short stature is considered a condition in which the height is 2 standard deviations below the mean height 
of a given age, sex, and population group. Human height is a polygenic and heterogeneous characteristic, and 
its heritability is reported to be approximately 80%. More than 600 variants associated with human growth 
were detected in the genome-wide association studies. Rare and common variants concurrently affect 
human height. The rare variations that play a role in human height determination and have a strong impact 
on protein functions lead to monogenic short stature phenotypes, which are a highly heterogeneous group. 
With rapidly developing technologies in the last decade, molecular genetic tests have begun to be used widely 
in clinical genetics, and thus, the genetic etiology of several rare diseases has been elucidated. Identifying the 
genetic etiology underlying idiopathic short stature which represents phenotypically heterogeneous group of 
diseases ranging from isolated short stature to severe and syndromic short stature has promoted the under-
standing of the genetic regulation of growth plate and longitudinal bone growth. In cases of short stature, 
definite molecular diagnosis based on genetic evaluation enables the patient and family to receive genetic 
counseling on the natural course of the disease, prognosis, genetic basis, and recurrence risk. The determina-
tion of the genetic etiology in growth disorders is essential for the development of novel targeted therapies 
and crucial in the development of mutation-specific treatments in the future.
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Introduction
Short stature (SS) is considered a condition in which the height is 2 standard deviations (SD) 
below the mean height of a given age, sex, and population group.1 Short stature is one of the 
most common causes of admission to pediatric endocrinology clinics. In addition to the consti-
tutional delay of growth and puberty and familial short stature (FSS) known as “normal growth 
variants,” chronic diseases, hormonal diseases, and genetic causes play a role in the etiology of this 
condition.1 Idiopathic short stature (ISS) is a term used for children with SS without any systemic, 
endocrine, nutritional, or chromosomal abnormality. Idiopathic short stature comprises a wide 
range of patient group with phenotypic and genotypic heterogeneity, and most of the short 
children are followed up with this diagnosis.1 A multidisciplinary approach is required for the 
diagnosis of ISS, and clarification of the molecular diagnosis can be a guide in terms of follow-up 
and treatment.1

Growth and height growth in children is a multifactorial condition characterized by both genetic 
and environmental factors.2 The prevalence of pathological SS in different populations ranges 
from 1.3% to 19.8%.3 In a study conducted on school children in South India, the prevalence 
of SS was found to be 2.86%.4 Although the frequency of SS among children and adolescents 
in Shanghai was 3.26%, it was 0.7% in a study evaluating 79 495 children in Utah.5,6 In a study 
conducted on school children in the United Kingdom, the frequency of SS was 1.3%.7 In differ-
ent studies evaluating school children in Turkey, the frequency of SS was found to be between 
6.4% and 10.2%.8-10
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Human height is a polygenic and heterogeneous 
characteristic, and its heritability is reported 
to be approximately 80%.11 More than 600 
variants associated with human growth were 
detected in the genome-wide association stud-
ies (GWAS).12-14 Rare and common variants 
concurrently affect human height. Height dif-
ferences within the normal range are related 
to common variants (multiple polymorphisms), 
and these variants are known to be involved in 
growth plate functions.15,16 The rare variations 
that play a role in human height determination 
have a strong impact on protein functions and 
lead to monogenic SS phenotypes, which are a 
highly heterogeneous group.14

With rapidly developing technologies in the last 
decade, molecular genetic tests have begun to 
be used widely in clinical genetics, and thus, the 
genetic etiology of several rare diseases has 
been elucidated.17 In diseases with high genetic 
heterogeneity such as ISS, microarray, meth-
ylation studies, and next-generation sequencing 
(NGS) technologies allow the determination of 
etiology in some cases. In a study on pediatric 
patients with isolated growth hormone defi-
ciency and ISS, NGS was shown to be beneficial 
in determining the genetic etiology.18 In recent 
years, the evaluation of SS cases along with 
clinical findings and genetic analysis results has 
provided a better understanding of the clinical 
variability and genetic heterogeneity of SS syn-
dromes.19 In cases of SS, definite molecular diag-
nosis based on genetic evaluation enables the 
patient and family to receive genetic counseling 
on the natural course of the disease, prognosis, 
genetic basis, and recurrence risk. In this study, 
we aimed to summarize the molecular mecha-
nisms underlying the genetic causes of SS cases 
and to discuss the genetic approach algorithm to 
these cases.

Molecular Genetic Mechanisms of 
Short Stature

Defects in Hormonal Signaling Pathway 
(Growth Hormone/Insulin-Like Growth 
Factor 1 System)
Mutation in genes involved in the GH/IGF1 sig-
naling pathway causes growth retardation and 
SS. Isolated GH deficiency is observed owing 

to defects in growth hormone 1 (GH1), growth 
hormone-releasing hormone receptor genes, 
and transcription factors (HESX1, SOX2, SOX3, 
LHX3, LHX4, PTX1, PTX2, OTX2, PROP1, and 
POUF1) involved in pituitary gland development 
in this pathway.20 Defects in GH receptor (GHR) 
and signal transducer and activator of transcrip-
tion 5b (STAT5B) gene result in the development 
of GH resistance.21,22 In addition to SS, immune 
dysregulation is observed in STAT5B defects.23 
In IGF1 and IGF1R defects, intrauterine growth 
retardation (IUGR), microcephaly, and devel-
opmental delay are observed because these 
molecules also play a role in intrauterine devel-
opment (Table 1).24-26

Defects in Paracrine Signaling
Paracrine factors are effective in the prolifera-
tion and differentiation of chondrocytes in the 
growth plate.27 Paracrine signaling pathways 
include fibroblast growth factor (FGF)–FGF 

receptor signaling, parathyroid hormone-related 
protein and Indian hedgehog signaling, bone 
morphogenetic protein signaling, WNT signal-
ing pathway, C-type natriuretic peptide signaling, 
and insulin-like growth factor 2 signaling. FGFR3 
mutations cause skeletal dysplasia phenotypes 
such as achondroplasia, hypochondroplasia, and 
thanatophoric dysplasia.28-30 Mutations in PTHLH 
and PTH1R cause brachydactyly type E2 and 
various types of skeletal dysplasia (Blomstrand 
lethal chondrodysplasia, Eiken syndrome, and 
metaphyseal chondrodysplasia Murk Jansen 
type), respectively.31-33 IHH mutations lead to 
brachydactyly type A1 and acrocapitofemoral 
dysplasia phenotypes.34 Although bone mor-
phogenetic protein signaling defects cause 
brachydactyly, WNT signaling pathway (ROR2, 
WNT5A, and DVL1) anomalies cause Robinow 
syndrome.35-37 Biallelic inactivating mutations 
in the natriuretic peptide receptor 2 (NPR2) 
gene cause acromesomelic dysplasia Maroteaux 

Main Points

•	 In short stature, the determination of  genetic epi-
demiology plays an important role in the follow-
up and treatment of  other system pathologies.

•	 Molecular genetic studies guide the identification 
of  rare short-stature variants.

•	 Molecular diagnosis in the short stature allows the 
family to receive genetic counseling.

Table 1.  Overview of Short Stature Syndromes

Molecular 
Genetic 
Mechanisms of  
Short Stature Associated Genes Clinical Phenotypes

Defects in 
hormonal 
signaling pathway

GH1, GHRHR, 
HESX1, SOX2, 
SOX3, LHX3, LHX4, 
PTX1, PTX2, OTX2, 
PROP1, POU1F1, 
GHR, STAT5B, IGF1, 
IGF1R

Isolated GH deficiency, Laron syndrome, GH resistance with immune 
dysregulation, IGF1 deficiency, IGF1 resistance (OMIM:#262400, 
612781, 173100, 262650, 618157, 182230, 206900, 312000, 221750, 
610125, 613986, 610125, 262600, 613038, 262500, 604271, 618985, 
245590, 608747, 270450)

Defects in 
paracrine 
signaling

FGFR3, PTHLH, 
PTH1R, IHH, ROR2, 
WNT5A, DVL1, 
NPR2, IGF2

Achondroplasia, hypochondroplasia, thanatophoric dysplasia, 
brachydactyly type E2, Chondrodysplasia Blomstrand type, Eiken 
syndrome, Metaphyseal chondrodysplasia Murk Jansen type, 
Brachydactyly type A1, Acrocapitofemoral dysplasia, Robinow 
syndrome, acromesomelic dysplasia Maroteaux type, Russell–Silver 
syndrome (OMIM:#100800, 146000, 187600, 187601, 613382, 
215045, 600002, 125350, 156400, 112500, 113000, 608747, 616331, 
602875, 615923, 616255, 616489) 

Defects in 
cartilage 
extracellular 
matrix

COL2A1, COL9A1, 
COL9A2, COL9A3, 
COL10A1, 
COL11A1, 
COL11A2, ACAN, 
COMP, MATN3, 
FBN1, HSPG2

Stickler syndrome, Spondyloperipheral dysplasia, Spondyloepiphyseal 
dysplasia Stanescu type, SMED Strudwick type, SED congenital, 
Platyspondylic skeletal dysplasia Torrance type, Czech dysplasia, 
multiple epiphyseal dysplasia, Metaphyseal chondrodysplasia Schmid 
type, Fibrochondrogenesis, Spondyloepimetaphyseal dysplasia aggrecan 
type, Short stature and advanced bone age with or without early-onset 
osteoarthritis and/or osteochondritis dissecans, Pseudoachondroplasia, 
Spondyloepimetaphyseal dysplasia, Boroc​howit​z-Cor​mier-​Daire​ type, 
Geleophysic dysplasia 2, Acromicric dysplasia, Dyssegmental dysplasia, 
Silverman-Handmaker type (OMIM:#132450, 619248, 200610, 608805, 
609162, 156550, 150600, 604864, 165800, 177170, 154700, 255800) 

Transcription 
factors

SOX9, SHOX, 
LARP7, ANKRD11, 
CREBBP, EP300, 
KMT2D, KDM6A

Campomelic dysplasia, Langer mesomelic dysplasia, Leri-Weill 
dyschondrosteosis, Alazami syndrome, KBG syndrome, Rubinstein-Taybi 
syndrome, Kabuki syndrome (OMIM:# 114290, 249700, 127300, 615071, 
148050, 180849, 613684, 147920, 300867) 

DNA Repair ATR and ATR-ATRIP 
complex, RBBP8, 
DNA2, TRAIP, 
SMARCAL1, LIG4, 
XRCC4

Seckel Syndrome, Schimke immunoosseous dysplasia, LIG4 syndrome, 
“Short stature, microcephaly, and endocrine dysfunction” (OMIM:# 
210600, 606744, 615156, 242900, 606593, 616541)

GH, growth hormone; IGF1, insulin-like growth factor I; LIG4, ligase IV; SED, spondyloepiphyseal dysplasia; SMED, 
spondylometaepiphyseal dysplasia.
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type, and monoallelic mutations lead to the ISS 
phenotype.38 Paternal point mutations in IGF2 
and the loss of methylation at the imprinting 
control region (ICR1) site on chromosome 
11p15.5 cause Russell–Silver syndrome (RSS) 
(Table 1).38-40

Defects in Cartilage Extracellular Matrix
The extracellular matrix synthesized by chon-
drocytes comprising collagen, proteoglycan, and 
non-collagen proteins is vital for the structure 
and functions of the growth plate.41 Defects of 
genes involved in collagen synthesis (COL2A1, 
COL9A1, COL9A2, COL9A3, COL10A1, COL11A1, 
and COL11A2) cause different types of skel-
etal dysplasia.42-45 Defects of genes involved in 
the synthesis of non-collagen matrix proteins 
(ACAN, COMP, MATN3, FBN1, and HSPG2) cause 
SS, connective tissue anomalies, joint problems, 
and osteopenia (Table 1).46-50

Defects in Constitutive Cellular Processes
Because the genes involved in constitutive cel-
lular processes are crucial not only in the growth 
plate but also in all cells, findings such as micro-
cephaly, skeletal dysplasia, and facial dysmor-
phism are observed in addition to SS and growth 
retardation in these cases. Defects in constitu-
tive cellular processes can be divided into 3 
groups according to its molecular mechanism.

Transcription Factors
Mutations in genes encoding transcription fac-
tors lead to various syndromic SS phenotypes. 
SOX9 mutations cause campomelic dysplasia.51 
Biallelic mutations of SS homeobox-containing 
gene (SHOX) lead to Langer mesomelic dyspla-
sia, which is a severe skeletal dysplasia, whereas 
monoallelic mutations lead to Léri–Weill dys-
chondrosteosis phenotype, a milder skeletal 
dysplasia.52 Syndromic SS is noted in defects of 
several genes involved in transcription regulation 
(LARP7, ANKRD11, CREBBP, EP300, KMT2D, 
and KDM6A) (Table 1).53-56

DNA Repair
DNA repair defects cause severe SS, micro-
cephaly, photosensitivity, leukemia, and syn-
dromic SS that predispose to other types of 
cancer. Mutations in ATR and ATR-ATRIP com-
plex, RBBP8, DNA2, and TRAIP cause Seckel 
syndrome, whereas mutations in NBN lead to 
progressive microcephaly, IUGR, increased sen-
sitivity to ionizing radiation, and Nijmegen break-
age syndrome, which causes premature ovarian 
failure in women.57-61 Mutations in SMARCAL1, 
LIG4, and XRCC4 lead to Schimke immuno-
osseous dysplasia, LIG4 syndrome, and “Short 
stature, microcephaly, and endocrine dysfunc-
tion” phenotypes, respectively (Table 1).62-64

Intracellular Signaling
Intracellular defects cause an extremely hetero-
geneous group of diseases that affect different 
signaling pathways, of which the most com-
monly known is the rat sarcoma (RAS)​–mito​
gen-a​ctiva​ted protein kinase pathway.65 Diseases 
that occur as a result of mutations in the genes 
involved in this signaling pathway are known as 
RASopathies.66 The most common RASopathy 
is Noonan syndrome, most commonly caused 
by mutations in PTPN11 (50%).67 Other genes 
associated with this syndrome are SOS1 (11%), 
RAF1 (5%), KRAS, NRAS, SHOC2, and BRAF. 
LEOPARD syndrome, Costello syndrome, car-
diofaciocutaneous syndrome, neurofibromato-
sis type 1, and Legius syndrome are among the 
other RASopathies group diseases. Common 
clinical findings of this group of diseases include 
SS, congenital cardiac anomalies, skin findings, 
neurocognitive retardation, characteristic facial 
findings, and cancer predisposition. Apart from 
this signaling pathway, FGD1, GNAS1, and PI3K 
mutations act on different intracellular pathways, 
leading to Aarskog–Scott syndrome, Albright 
hereditary osteodystrophy, and SHORT syn-
drome, respectively (Table 1).68-70

Diagnostic Approach
The first step in the diagnostic examination 
of SS comprises obtaining family and patient 
history; physical examination; evaluation of 
growth velocity status and bone age; and a set 
of laboratory examinations. In pediatric endo-
crinology clinics, patients are evaluated in terms 
of FSS and constitutional delay in growth and 
puberty which are the variants of normal as 
well as hormonal dysfunctions and chronic dis-
eases affecting growth as the first step of clini-
cal examination. After hormonal examinations, 
targeted single gene analyses can be planned 
in cases with suspected anomalies in the GH/
IGF1 signaling pathway. Careful evaluation of 
body proportion is important in the diagnosis 
of skeletal dysplasia, and in cases suspected of 
skeletal dysplasia, the entire skeleton should be 
evaluated with a bone survey.71 Skeletal dysplasia 
findings are detected in 22% of ISS cases, and 
this rate increases to 33% in the presence of 
an affected parent.71 In the evaluation of bone 
age, delayed or advanced bone age status can 
be detected in different clinical entities.1,72,73 The 
prevalence of SHOX deficiency in ISS cases var-
ies between 3% and 15%.74-77 Therefore, the 
presence of radiographic findings (radiolucency, 
pyramidalization, and triangularization) on the 
wrist radiograph suggests that SHOX deficiency 
should be carefully evaluated.78 In addition, 
it should be noted that radiographic findings 
become evident in the late childhood period. In 
cases where SS is accompanied by dysmorphic 

findings, genetic consultation should be consid-
ered. Even if the typical stigmata of Turner syn-
drome are not found in girls with SS, karyotype 
should be requested.79

“American College of Medical Genetics and 
Genomics practice resource": The algorithm 
suggested in the genetic approach to short stat-
ure cases according to the “Genetic evaluation 
of short stature” guideline is summarized in 
Figure 1.80 It is recommended to evaluate body 
proportion first. It is recommended to consider 
skeletal dysplasia in the first place in dispropor-
tionate cases and to request targeted analyses in 
the presence of specific diagnosis in radiographic 
evaluation. In the absence of specific diagnosis, it 
is recommended to evaluate using NGS panel or 
exome sequencing.81 Although targeted analyses 
are recommended in the presence of primary 
endocrinopathy or a recognizable syndrome 
in proportionate cases, karyotype is recom-
mended in all female cases. In ISS cases with per-
sistent SS, SHOX gene analysis is recommended 
if clinical findings are compatible and chromo-
somal microarray analysis (CGH and/or SNP) 
is recommended in the absence of a specific 
diagnosis. In cases with normal chromosomal 
microarray analysis, when methylation defect-
related diseases (RSS, Temple Syndrome, etc.) 
are considered, analyses for methylation defects 
and uniparental disomy should be planned; 
alternatively, NGS panels or exome sequenc-
ing can be planned. Simultaneous or sequen-
tial chromosomal microarray analysis and NGS 
panel or exome sequencing are recommended 
for genetic etiology when FSS is suspected in 
proportionate cases.80 In this guideline, some 
special cases are emphasized. These conditions 
are as follows: (i) microarray analysis is recom-
mended in females with persistent or evolving 
SS in which Turner syndrome is excluded. (ii) 
In cases of ISS, small for gestational age (SGA) 
with persistent SS, and syndromic short stature, 
it is recommended that chromosomal microar-
ray analysis be applied as the first step in genetic 
test. The rate of diagnosis using chromosomal 
microarray analysis in this group of patients is 
10%-15%.81-85 (iii) It is recommended to refer 
to the medical genetics departments for cases 
in which a specific diagnosis cannot be made 
but for which exome sequencing evaluation is 
required for suspected monogenic etiology. 
Particularly in cases with significant SS (height < 
−3 SD), facial dysmorphism, skeletal abnormali-
ties, intellectual disability, microcephaly, multiple 
pituitary hormone deficiency, severe GH defi-
ciency, SGA with persistent SS, family history of 
consanguinity, or family history of 1 parent with 
height of< −2SD are recommended to be con-
sulted for further genetic analysis.80
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Genetic Testing Strategies
Using the genetic analyses mentioned in the pre-
vious section at appropriate time and order spe-
cific to patient will increase the rate of diagnosis. 
Genetic analyses used in the evaluation of SS 
cases can be performed through a wide range 
of conventional karyotyping, methylation analy-
sis, microarray analysis, single-gene sequencing, 
NGS panel analysis, and exome sequencing. 
It should be noted that each technique has its 
advantages and limitations.

Chromosome Analysis
The first step in the evaluation of a child with 
SS is karyotyping. It is recommended for all 
female cases with SS suspected of having Turner 
syndrome or even without typical stigmata. 
Fluorescence in situ hybridization (FISH) analysis 
is used for diagnosis when micro​delet​ion/m​icrod​
uplic​ation​ syndromes that cannot be detected 
by karyotyping are suspected. Since 80%-90% of 
SHOX deficiency cases are associated with dele-
tions, FISH analysis should be performed for the 
SHOX gene as the first step. In cases where dele-
tion is not detected (10%-20% of the affected 
individuals), sequence analysis of the SHOX gene 
should be performed as the second step.86 It 
should be noted that FISH analysis may not be 

sufficient in some cases depending on the loca-
tion and size of the deletion, and chromosomal 
microarray/multiplex ligation-dependent probe 
amplification analyses should be planned in 
these cases.86

Karyotyping and FISH analyses are used in the 
analysis of recurrent micro​delet​ion/m​icrod​uplic​
ation​ syndromes accompanied by SS. In addition 
to SS, microcephaly, facial dysmorphism, devel-
opmental delay, and congenital malformations 
can be seen in these syndromes.

Single Gene Testing
In ISS cases, targeted single-gene analyses should 
be selected if a specific single-gene defect is sus-
pected based on the findings of clinical, labora-
tory, and radiographic examinations. Analyses 
of genes such as GHR, IGF1, IGF1R, IGFALS, and 
PAPPA2 can be planned after clinical and labora-
tory evaluation of individuals with suspected GH/
IGF-I axis defect. In cases where SHOX deficiency 
is considered, the test algorithm specified in the 
previous section should be applied. Although 
the clinical severity varies, sequence analysis for 
ACAN should be planned to investigate biallelic 
mutations in cases with spondyloepimetaphy-
seal dysplasia and severe SS.72 Mild signs such 

as skeletal dysplasia, SS, midface hypoplasia, 
and advanced bone age suggest monoallelic 
mutations in the ACAN gene.72 Heterozygous 
mutations in the ACAN gene were detected in 
1.4% of ISS cases.87 Genetic analysis should be 
performed for the point mutation in FGFR3 at 
c.1138G>A (p.Gly380Arg), which is known to 
be responsible for 99% of the cases, in patients 
with suspected achondroplasia. In cases with 
hypochondroplasia, point mutation analysis of 
FGFR3 at c.1620C>A/G (p.Asn540Lys) noted 
in 70%-80% of cases should be performed. 
If mutation cannot be detected, whole gene 
sequencing of FGFR3 should be requested. The 
genetic evaluation for suspected thanatophoric 
dysplasia type II and thanatophoric dysplasia 
type I include analysis of the point mutation in 
FGFR3 gene at p.Lys650Glu which is known to 
cause 99% of the cases and at p.Arg248Cys & 
p.Tyr373Cys which are known to cause 90% 
of cases, respectively. If mutation cannot be 
detected, whole gene sequencing of FGFR3 
should be requested. Although the prevalence 
varies in different studies, heterozygous loss-of-
function mutations in the NPR2 gene have been 
detected in ISS cases and it has been shown that 
biallelic mutations cause acromesomelic dyspla-
sia (Maroteaux type).88

Figure 1.  Algorithm for the genetic evaluation of  short stature (this algorithm is proposed by American College of  Medical Genetics and Genomics practice 
resource: Genetic evaluation of  short stature).
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Multi-Gene Testing Approach
In the absence of specific diagnosis in ISS cases, 
targeted NGS panels can be employed.89-91 
Although the diagnosis rates with targeted NGS 
panels in ISS cases vary according to the gene 
content of the panel and patient selection cri-
teria, it ranges between 2% and 8.7%.89-91 The 
most common diagnoses in cohorts evaluated 
with targeted NGS panels comprise Noonan 
syndrome (PTPN11, SOS1), statures, and 
advanced bone age, with or without early onset 
osteoarthritis and/or osteochondritis dissecans 
(ACAN), Stickler syndrome (COL2A1), and pseu-
doachondroplasia (COMP).89-91

Genome-Wide Testing Approach
Comparative genomic hybridization (Array-
CGH) or SNP arrays platforms, which assess 
the whole genome for copy number varia-
tions (CNVs), and whole-exome sequencing 
(WES) analyses for the whole protein-encoding 
genome are comprehensive genetic tests that 
can be used in ISS cases. Comparative genomic 
hybridization (Array-CGH) or SNP arrays plat-
forms are recommended to be applied before 
WES in ISS cases because they are cheaper and 
easily accessible.80

In the Array-CGH or SNP array studies con-
ducted on ISS cases, CNVs’ detection rates 
were found to be approximately 10%-15%.81-85 
Recurrent micro​delet​ion/d​uplic​ation​ syndromes 
were detected in some of the diagnosed 
cases, and the remaining had deletions/dupli-
cations containing genes associated with short 
stature.81-85

In cases with ISS with normal karyotype, micro-
array, and targeted NGS panel results, it has 
been reported that the diagnosis rates are 
between 16.5% and 46% with WES analysis.92-95 
Analysis of all previously identified SS genes is 
possible through WES analysis. In addition, WES 
analysis is a genetic tool that enables the discov-
ery of novel genes and signaling pathways associ-
ated with SS and growth retardation. Molecular 
diagnosis is easier in the presence of pathogenic 
or likely pathogenic variant compatible with 
the patient’s clinic; however, several variants of 
uncertain significance (VUS) are observed dur-
ing WES analysis. During the interpretation of 
these VUS variants, all clinical, laboratory, and 
radiographic data of the patient and segregation 
analysis studies are used.

It should be noted that rare genetic syndromes 
that occur with epigenetic mechanisms may 
be responsible for the etiology of ISS cases.96 
Russell–Silver syndrome is characterized by pre-
natal and postnatal growth retardation, feeding 

difficulties, recurrent hypoglycemia, body asym-
metry, prominent forehead, and relative mac-
rocephaly at birth.97 Molecular etiology can be 
detected in 60% of the cases, and the most 
common loss of methylation (30%-60%) on 
chromosome 11p15, followed by maternal uni-
parental disomy for chromosome 7 (5%-10%), is 
observed.97 In cases with suspected RSS, the first 
step in genetic evaluation should be methylation 
analysis for the chromosome 11p15 region and 
maternal UPD analysis for chromosome 7.97 In 
cases with normal test results, further analyses 
should be performed to investigate rarer causes 
(UPD16, UPD20 and CDKN1C, and IGF2 gene 
sequence analyses).97

The rate of diagnosis has increased in cases of ISS 
owing to genome-wide genetic analysis methods 
that have developed and become widespread 
in the last decade. Genetic analyses suitable for 
specific prediagnosis are planned after the iden-
tification of phenotypic findings in syndromic 
and non-syndromic SS. In recent years, the 
widespread use of genetic tests has led to the 
early diagnosis of cases with the reverse genetics 
(inverse genotype-first strategy) approach and 
contributes to the better identification of phe-
notypic findings of SSsyndromes.98

Conclusion and Future Perspectives
Advances in the field of molecular genetics 
have made a serious contribution to the deter-
mination of the genetic etiology of ISS cases. 
Identifying the genetic etiology underlying ISS 
which represents phenotypically heteroge-
neous group of diseases ranging from isolated 
short stature to severe and syndromic SS has 
promoted the understanding of the genetic 
regulation of growth plate and longitudinal bone 
growth. The approach to cases of SS first com-
prises physical examination, family history, mea-
surement of body proportion, definition of facial 
dysmorphic findings, analysis of laboratory and 
radiological findings, and evaluation of bone age. 
In the presence of specific prediagnosis, genetic 
evaluation methods should be planned in accor-
dance with the genetic test algorithm recom-
mended in the previous sections. Clarification of 
genetic etiology is helpful to obtain individualized 
medical management of patients, determine the 
prognosis, provide appropriate genetic counsel-
ing, and avoid unnecessary tests. The determina-
tion of the genetic etiology in growth disorders 
is essential for the development of novel tar-
geted therapies and crucial in the development 
of mutation-specific treatments in the future.
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