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ABSTRACT

Sepsis is a syndrome that includes physiological, pathological, and biochemical abnormalities resulting from 
the host immune response to infection. Despite the improved treatment modalities in recent years, the inci-
dence and mortality of sepsis are still increasing. Sepsis immunopathology is increasingly attracting the atten-
tion of researchers. The successes experienced with immunotherapeutics in the treatment of cancer and 
coronavirus disease 2019, which are diseases with similar pathophysiological features and common immune 
defects with sepsis, have given rise to the hope that similar successes can be achieved in the treatment of 
sepsis. In this review, future perspectives on the immunopathology of sepsis and immunotherapeutics are 
presented to improve the current understanding of the disease.
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Introduction
Sepsis is not merely a modern problem. The condition was referenced in poems dating back 
thousands of years.1 According to Avicenna, it was the decay of blood and tissues with fever.2 
Current definitions explain it to be a life-threatening organ dysfunction caused by a systemic, 
dysregulated inflammatory host response to infection.3-6

Despite developing treatment modalities and a better understanding of the pathophysiology 
of sepsis, its mortality is extremely high due to tissue damage, vital organ failures, and excessive 
inflammatory responses.7-16 In addition, the morbidity of post-sepsis with its wide spectrum of 
symptoms constitutes a severe health problem.17 Sepsis is a huge burden on health economics 
due to high treatment costs.18 With an alarmingly high rate of incidence, sepsis has become one 
of the leading causes of death in the world. Half of all in-hospital deaths in the USA are directly 
or indirectly related to sepsis.19 Sepsis has undoubtedly transformed into an issue in global public 
health.20 In 2017, sepsis was officially recognized as a global health priority by the World Health 
Assembly.21

Sepsis is a syndrome that requires urgent treatment. Based on recent developments, both the 
rate of early diagnosis and the rate of treatment have increased.22 An effective sepsis treatment is 
as important as early sepsis diagnosis. Although nosocomial deaths due to sepsis have decreased 
in recent years with the onset of supportive care and early diagnosis, our improved understand-
ing of its pathogenesis has not greatly improved outcomes.23

Consequently, a re-examination of the pathophysiological basis underlying sepsis has become 
necessary.15 Researchers have done a great deal of work on its immunopathology in the last 
decade.14,15 The complex pathophysiology of sepsis has become better understood, given new 
theories circulating on issues regarding host immune response.15 Understanding the mechanisms 
responsible for pro- and anti-inflammatory responses in the disease has shed light on effective 
treatment approaches.15
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There is no known, effective pharmacological 
treatment for sepsis.21 The researchers chose 
to call it a pharmaceutical graveyard because no 
effective treatment for sepsis could be found.24 
Although successes have been achieved in sepsis 
experiments with various drugs in preclinical ani-
mal experiments,16,25-39 the clinical translation of 
these successes has been almost nonexistent.30

Sepsis and cancer share many pathophysiologi-
cal features and common immune defects.15,31 
The achievements that immunotherapy has had 
in cancer treatment, especially in this period 
when the immunology of sepsis was well under-
stood, gave rise to hope that similar successes 
can be attained against sepsis.15 The potentiality 
of overcoming the failures experienced in clini-
cal trials for sepsis32 with sepsis immunotherapy 
is extremely attractive. In order to identify new 
drug targets, there is a need to increase the 
focus on basic studies of the pathophysiology of 
the disease.32 This review aims to contribute to 
the future perspective by examining the immu-
nopathology of sepsis and immunotherapies.

Pro-Inflammatory Mechanisms in 
Sepsis
An excessive pro-inflammatory response to the 
pathogen is the hallmark of sepsis, a disease that 
is almost synonymous with terms such as exces-
sive inflammation, cytokine storm, and systemic 
inflammation.6,33,34 In sepsis, the eradication 
of pathogens is targeted with the pro-inflam-
matory response, and leukocyte activation, 
cytokine production, reactive oxygen species 
release, and complement and coagulation sys-
tem activation occur with the pro-inflammatory 
response.35 An uncontrolled, excessive pro-
inflammatory response can have detrimental 
effects on the host, such as high fever, tachy-
cardia, tachypnea, hypotension, coagulation 
disorders, and organ failure from collateral tis-
sue damage.36 After infection, the sepsis agent 
encounters the host’s innate immune system, 
which becomes alert to pathogens by recog-
nizing pathogen-associated molecular patterns 
(PAMPs) through pattern recognition recep-
tors.37 Pattern recognition receptors are also 
capable of distinguishing endogenous distress 

signals called damage-associated molecular pat-
terns (DAMPs). These signals are released by 
damaged/necrotic host cells and potentiate the 
pro-inflammatory response.38

Neutrophils play an important role in control-
ling the infection. However, it is thought that 
neutrophil migration and antimicrobial activity 
are impaired in sepsis and contribute to the 
dysregulation of immune responses.39 It was, 
nevertheless, observed that neutrophil lifespan 
increased with the activation of anti-apoptotic 
pathways during sepsis.40 One of the numer-
ous antimicrobial mechanisms of neutrophils is 
neutrophil extracellular traps (NETs), consist-
ing of modified chromatin “decorated” with 
bactericidal proteins.41 Vascular inflammation 
and coagulation are enhanced by the release 
of NETs.42 However, NETs can cause also tis-
sue damage. An association has been found 
between increased NETs and organ dysfunction 
in sepsis patients.43 Cytokines, such as tumor 
necrosis factor-α (TNF-α), interleukin (IL)-1β,
and IL-6, are important mediators of the innate 
immune system and play a crucial role in the 
first response to injury or infection. Pathogen-
associated molecular patterns or DAMPs from 
invading organisms are recognized by macro-
phage receptors such as Toll-like receptors. As 
a result, the production of pro-inflammatory 
cytokines such as TNF-α, IL-1β, and IL-6 and
chemokines such as IL-8 and monocyte che-
moattractant protein-1 occurs. Tumor necrosis 
factor-α, IL-6, IL-1β, IL-12, nuclear factor kappa
B, and IL-18 are pro-inflammatory cytokines that 
have their own impact on sepsis inflammation. 
Their functions have been repeatedly demon-
strated in many experimental studies.34,38,44

The complement system is a very powerful 
component of immunity. However, uncontrolled 
complement activation can harm the host. It has 
been shown in experiments that the results of 
sepsis are improved by blocking the comple-
ment component 5a signal.45 The coagulation 
system is also strongly activated during the onset 
of the disease. This response is likely based on 
a reflex that creates microvascular occlusion to 
prevent the spread of the pathogen into the 
system. Platelets increase immune cell activa-
tion and inflammation, facilitate vaso-occlusive 
thrombus formation in capillary vessel beds, and 
may have direct toxic effects on cells. Excessive 
platelet activation likely contributes to organ 
damage.46 The excessive inflammatory response 
in sepsis affects all organs and tissues as well as 
activates the endothelium, causing the release 
of pro- or anti-inflammatory mediators. The 
integrity of the endothelial barrier also becomes 
compromised. Increased barrier insufficiency 

causes leakage of intravascular proteins and 
plasma into the extravascular space.47 While this 
infiltration provides benefits in infected areas 
by the entry of complement, immunoglobulins, 
and other protective molecules, it often causes 
diffuse tissue edema and reduced microvascular 
perfusion.14 Oxidative stress occurs in response 
to hypoxia, microbial clearance, and endothelial 
repair processes in sepsis. However, as a result 
of an excessive increase in reactive oxygen spe-
cies, the balance of the antioxidant system is 
disrupted and endothelial damage inevitably fol-
lows. It is accepted that reactive oxygen species 
play an important role in triggering many media-
tors and pro-inflammatory cytokines produced 
in acute inflammatory responses associated with 
sepsis.48

Immunosuppression Mechanisms in 
Sepsis
When examining host response theories 
regarding sepsis, anti-inflammatory responses 
are a vital element of its pathophysiology.15 
Lymphocyte exhaustion can be defined as pro-
gressive loss of functionality and decreased pro-
liferative ability induced by prolonged antigen 
stimulation in the course of cancer or chronic 
infections.49 A strong depletion of CD4+ and 
CD8+ T cells, B cells, and dendritic cells is 
seen in sepsis.50 T  lymphocyte exhaustion was 
observed in postmortem examinations of 
patients who died from the disease. In many 
fatal cases, increased expression of programmed 
cell death 1 (PD1) was observed in CD4+ T 
cells.50 Apoptosis aims to remove damaged cells 
and maintain homeostasis under normal physi-
ological conditions.51 In the sepsis experiment 
performed with the cecal ligation and puncture 
model in mice, it was shown that Bim, caspase-3, 
caspase-8, and caspase-9 levels were significantly 
elevated, thus increasing apoptosis in sepsis.52 
Antigen-presenting cells (APCs) are derived in 
the bone marrow. This team consists of den-
dritic cells, Langerhans cells, macrophages, and 
B cells. Antigen-presenting cells capture antigens 
and process and present antigens to T cells.53 
Sepsis indirectly or directly impairs the function 
of almost all immune cells, as well as impairing 
the functions of APCs, preventing them from 
fully performing their functions.14,15

There are a number of immune regulatory 
molecules that control the pro-inflammatory 
cytokine response. Chief among these are anti-
inflammatory cytokines. Major anti-inflamma-
tory cytokines include IL-4, IL-10, IL-11, and 
IL-13.54,55 Interleukin-4, IL-10, and IL-37 are 
anti-inflammatory cytokines that have impor-
tant functions, especially in sepsis.56 Interleukin-4 
and IL-10 inhibit the differentiation of CD4+ T 

Main Points

•	 The failure of  many clinical trials in sepsis has
required new insights into the pathophysiological
basis of  the disease.

•	 Detailed examination of  sepsis immunopathol-
ogy has strengthened our understanding of  sepsis 
pathogenesis.

• The success achieved with immunotherapy in
coronavirus disease 2019 and cancer treatments
has also been hope for sepsis.
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cells into T helper 1 cells, reducing the release 
of pro-inflammatory cytokines, including IL-2 
and interferon-γ (IFN-γ). Interleukin-10, an 
immunosuppressive cytokine with multiple 
functions, is mainly secreted by monocytes/mac-
rophages and T helper 2 cells. Interleukin-10 
has been shown to inhibit TNF formation in 
sepsis-induced mice. Interleukin-10 can also 
promote the proliferation of myeloid-derived 
suppressor cells in mice with sepsis and exacer-
bate immunosuppression in mice with advanced 
sepsis.56 Although belonging to the IL-1 family, 
which contains cytokines that generally have 
pro-inflammatory properties, IL-37 reduces 
inflammation and adaptive immune responses. 
Interleukin-37 can also inhibit the release of 
pro-inflammatory cytokines.57 Expression of 
IL-37 in patients with sepsis is significantly upreg-
ulated, which may obstruct proliferation and 
release of pro-inflammatory cytokines, and is 
closely related to the severity of sepsis-induced 
immunosuppression.58

Immunotherapies in Sepsis
The search for treatments that specifically 
target the immune system has dominated 
the sepsis research field for over 40 years.59 
Granulocyte-macrophage colony-stimulating 
factor (GM-CSF), recombinant human IL-7, 
IFN-γ, PD1 and programmed cell death pro-
tein 1 (PDL1)-specific antibodies, anti-TNF-α, 
recombinant human IL-3 and IL-15 treatments 
are among those that have undergone significant 
research.

It is known that dysregulated immune responses 
triggered by sepsis cause dysfunction of neu-
trophils.60 Granulocyte-macrophage colony-
stimulating factor enhances immunity by 
augmenting the bactericidal abilities of neutro-
phils and monocytes during sepsis.15 According 
to the results of a clinical trial with GM-CSF, 
GM-CSF treatment helped shorten the dura-
tion of antibiotic therapy, although it did not 
change the mortality rate.61 Other studies have 
shown that patients treated with GM-CSF in the 
immunosuppressive phase of sepsis shorten the 
ventilator-dependent time and intensive care 
periods.62 Interleukin-7 is a pleiotropic cytokine 
and is extremely important for the development 
of T cells.63 Considering the T cell exhaustion 
that develops in sepsis, the importance of IL-7 in 
treatment is better understood. In clinical trials, 
recombinant IL-7 has been used to treat idio-
pathic lymphopenia and diseases caused by lym-
phopenia, proving its potential for the future.64 
In a study of mice with sepsis, IL-7 treatment 
increased the percentage of survival.65 In phase 
II clinical study, it was shown that 27 septic shock 
lymphopenia patients did not develop excessive 

inflammatory reactions or experience wors-
ened organ dysfunction as a result of IL-7 treat-
ment, but significantly saw increased CD4+ and 
CD8+ T lymphocyte counts.66

In a study on the therapeutic effect of IFN-γ in 
sepsis patients, it was observed that monocyte 
human leukocyte antigen-DR isotype expres-
sion accelerated and TNF-α secretion from 
monocytes increased, thereby improving patho-
gen elimination capacity.67 If IFN-γ is added to 
the treatment protocol in immunosuppressed 
patients, patients exhibiting adaptive immune 
dysfunction or chronic inflammation, or at risk, 
its effects on sepsis can be seen more clearly.68 
Programmed cell death 1 is a protein expressed 
in T cells, and when it binds with PDL1, it pre-
vents other cells from being killed by T cells.69 
It has been suggested that both anti-PD1 and 
anti-PDL1 treatments, which show great prom-
ise in cancer treatments, also have potential 
in sepsis-induced immunosuppression.70 The 
PD1–PDL1 blockade improved survival out-
comes in animal models of bacterial sepsis.71 
In a clinical patient study, the tolerability of an 
anti-PD1 antibody, nivolumab, was appropriate 
and did not cause conditions such as cytokine 
storm.72

Elevated TNF-α levels detected in the serum 
of septic patients in early sepsis studies led to 
the assumption that this cytokine has an impor-
tant role in septic shock.73 Administration of 
neutralizing anti-TNF monoclonal antibodies 
to baboons 2 hours before induction of sep-
sis with Escherichia coli has been observed to 
protect animals from shock and organ failure.74 
However, clinical studies conducted in the 90s 
resulted in the failure of TNF inhibition treat-
ments.75-77 Interleukin-3 and IL-15 should also 
be considered as potential sepsis treatments. 
Being foundational in the development and 
activation of effector and memory T, Natural 
killer and Natural killer T cells, and neutrophils, 
IL-15 has great potential in the treatment of sep-
sis immune dysfunction.78 In fact, an increased 
survival rate has been noted in mice with sepsis 
treated with IL-15.79 The synergistic role of IL-3 
with IL-7 makes it a candidate therapeutic to 
augment the potential effect of IL-7.80

Future Perspectives
Although excessive inflammation is one of the 
trademarks of sepsis, the terms sepsis-induced 
immune dysfunction and immunoparalysis have 
gained traction in the last 2 decades.15,59,81,82 This 
shows that the cult and plain excessive inflam-
matory view of sepsis has changed. While it is 
argued that mortality in sepsis is due to inflam-
mation and permanent immune activation, 

immunosuppression is increasingly recognized 
as the driving force behind sepsis mortality.24,68,83

A few decades ago, treatment strategies for 
sepsis were almost entirely aimed at suppress-
ing the hyperinflammatory response in the early 
stages.59 Clinical trials of anti-inflammatory ther-
apies targeting specific inhibition of elements 
that cause excessive inflammation in sepsis are 
fraught with failures.14 In recent years, therapeu-
tic strategies for immunosuppression in sepsis 
have also been developed. Some researchers 
also advocate for the use of immunostimulants 
in sepsis.15

Immunomodulation is revolutionizing the 
treatment of cancer, autoimmune diseases, 
and many other inflammatory disorders.84 
Immunomodulatory therapy is very important 
in sepsis because patients may arrive in the early 
hyperinflammatory phase or in the immuno-
suppression phase.15 Whichever it is, deducing 
the phase is extremely important. While the 
sepsis agent is actively spreading through the 
body, anti-cytokine drugs may put the patient 
at a disadvantage in the fight against the agent. 
However, while targeting immunomodulation, 
immune augmentation in a sepsis patient with 
cytokine storm can take excessive inflammation 
to incredible levels.

Another issue is the effects of cytokine storm 
on the patient. If the clinician is monitoring 
patients with biomarkers that rise during the 
cytokine storm, there are certain factors to 
consider, as anti-inflammatory signal pathways 
are triggered in response to high inflammation 
in sepsis.15 Although we know how and the rate 
by which cytokines such as IL-6 bind to their 
receptors in the presence of specific antibod-
ies such as tocilizumab,85 we still do not know 
exactly how cytokines bind to their receptors 
in sepsis. A second issue is that a biomarker 
followed in a patient with sepsis may show high 
levels in the blood, but the patient may not 
have any clinical symptoms. Hypothetically, in 
the presence of a cytokine receptor that can 
become desensitized with high cytokine values, 
the signal pathway may not be activated. On 
the other hand, the cause of cytokine elevation 
may also be a receptor in sensitivity itself. For 
this reason, it is extremely important to mea-
sure the activity of signaling pathways involved 
in inflammatory signaling in sepsis patients. In 
the treatment of sepsis, a treatment based on 
time-dependent correlations of organ damage 
with biomarker measurements and knowing 
the activity of the relevant inflammatory signal-
ing pathway may be much more beneficial for 
patients.
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In treatment, the principle of right medication, 
right dose, right patient, right time, and right 
route is extremely important.86 Unfortunately, 
finding the right time is almost impossible in sep-
sis patients. For this reason, the progression of 
clinical findings in patients will be important. In 
order to choose the right time for sepsis treat-
ment, the clinician must first know which stage 
of sepsis the patient is in. However, in order 
to find the right drug expression in sepsis, the 
expression of the right time must be fulfilled. 
Examination of the molecular pathophysiology 
of the disease at short-term intervals during the 
sepsis process can provide important informa-
tion. In this way, more accurate predictions can 
be made about which stage of sepsis the patient 
is in and how the host immune response may 
progress in sepsis.

Sepsis and cancer share many common immune 
defects.15 At the root of both diseases is the 
inability of the host’s immune system to cope 
with the initial insult. Immune dysfunctions due 
to sepsis and cancer are some of the common 
aspects of changes in the function of immune 
elements.31 Because of the major role of immu-
nity in anti-tumor surveillance, scientists are 
investigating this issue, as latent malignancies 
are likely to be present in the host due to the 
strong acute inflammatory response or immune 
defects seen in patients with sepsis.31,87 Clinical 
and experimental data indicate a potent immu-
nomodulatory effect of sepsis on cancer.31 The 
success of immunotherapies in cancer treat-
ments has been well-proven in recent years.88 
While cancer and sepsis have so many immuno-
logical points in common, the success rate seen 
in cancer immunotherapies has given rise to the 
hope that such treatment may also prove effec-
tive against sepsis. Though it is early now, in the 
future, sepsis may even be interpreted as “acute 
form of cancer.”

Sepsis immunotherapies are promising.15 
Coronavirus disease 2019 (COVID-19) has 
encouraged us in this regard. The common 
features found in the immunopathogenesis 
and pathophysiology of sepsis and COVID-19, 
and the treatment management of COVID-
19 benefited from the experience of sepsis.89 
Immunotherapeutics such as tocilizumab and 
anakinra have been used successfully in com-
bating COVID-19.90,91 This success is likely 
to be achieved in sepsis, which has many 
common pathophysiologic properties with 
COVID-19. Sepsis studies need a new direc-
tion. Here, the bedside and the bench need to 
work together. A molecular pathophysiology 
study that will examine the sepsis process in 
very thin sections in large patient populations 

will provide important information about how 
sepsis progresses and the optimal timing of 
treatment.
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